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Abstract. The correlation energies of quantum dot electrons with harmonic model interactions
in a large magnetic field are studied by comparing the Hartree–Fock (HF) ground state energies
with the exact values. The results for GaAs quantum dots show that the correlation corrections to
the ground state energies are very small, only 0.1–0.8% forN = 2–7 electrons. The changes of the
correlation energies with the electron–electron interaction strength�2 are also studied. It is shown
that the correlation energies increase rapidly with�2 for largerN , but are limited by the condition
�2 < ω2

0/N for a stable dot. The comparison of the HF and the exact energies, varying with the
total angular momentum, reveals that the correlation energies take their minima at the so-called
‘magic’ angular momenta that exist in the cases of Coulomb interactions.

It is well known that correlation interactions are important to determine the energy spectra
of quantum dot electrons [1]. So, a reliable theoretical approach to treat this problem
should include the correlation effects. The existing approaches mainly include the Hartree or
Hartree–Fock (HF) approximation and the direct numerical diagonalization. In the calculations
using the Hartree approximation for electron numbersN < 10 the exchange and correlation
effects were neglected [2–4]. The important role of the exchange and correlation effects
has been investigated for the ground state of a two-electron quantum dot by comparison
of a Hartree, a Hartree–Fock (HF) and an exact treatment [5]. It was found that the HF
approximation, including the exchange interaction but neglecting the electron correlation,
could give qualitatively incorrect results about the spin singlet–triplet transition [6–8]. Though
the correlation effects can be completely included in the exact numerical diagonalization
treatment, which has been performed for systems with electron numbersN 6 4 [9, 10], it
is computationally extensive and exceedingly difficult for more than six electrons. So it is not
a good choice to resort to the exact numerical diagonalization method to treat a greater number
of electron quantum dots. Indeed, if the correlation corrections are considered properly the
HF approximation can still be a useful method for these systems. The problem is how to
get the information about the role of the correlation effects in determining the energy spectra
of quantum dots. The most direct way to do this is to compare the results from the HF
approximation and the exact treatment, as was done for two electrons by Pfannkucheet al [5]
and for three electrons by Wang and Mao [11, 12]. Though results obtained in this way could
be useful in treating the problems with a greater number of electrons, we still expect to get
more direct results for them.

In this letter, however, we shall use another way to investigate the correlation interactions
of quantum dot electrons. Instead of treating the quantum dot ofN electrons with Coulomb
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interactions, we treat a quantum dot ofN electrons with harmonic model interactions. Since
this model can be solved analytically for anyN and the solution has been given by Johnson
and Payne [13], it is rather easy to calculate the correlation energies for anyN . Despite the
simplicity of the model electron–electron interaction, the basic features of the energy spectrum
of this model still resemble those with Coulomb interactions [10]. Thus, it is natural to expect
that the roles of the correlation interactions in both cases are similar.

The model Hamiltonian for an isolated, quasi-two-dimensional quantum dot in a
perpendicular magnetic field is

H = 1

2m∗
∑
i

(pi + eAi )
2 +

1

2
m∗ω2

o

∑
i

|ri |2 +
∑
i<j

V (ri , rj )− g∗µBB
∑
i

si,z. (1)

The dot lies in thex-y plane and containsN interacting electrons with effective massm∗,
negative charge−e, effective g-factorg∗, spatial coordinatesri = (xi, yi)and spin components
si,z along thez-axis. The quantityAi = B

2 (−yi, xi, 0) is the vector potential in the symmetric
gauge andµB is the Bohr magneton. The model interaction potential is given by [13]

V (ri , rj ) = 2V0 − 1

2
m∗�2

∣∣ri − rj ∣∣ (2)

whereV0 and� are positive parameters.
Generally, the correlation energy is defined as the difference between the exact and the

HF ground state energies, that is

Ec = Eexactg − EHFg . (3)

In a large magnetic field (typically, several tesla is large enough [14]), the lower-energy
eigenstates of the total HamiltonianH will be completely spin polarized, yielding a total spin
Sz = Nh̄/2. In this case, the exact ground state energies are then given by [13]

Eexactg = h̄
[
ω0(B) +

1

2
(N − 1)(N + 2)�0(B)− 1

4
N

[
N − 1 +

g∗m∗

m0

]
ωc

]
+N(N − 1)V0 (4)

whereωo(B) = (ω2
0 + ω2

c/4)
1/2, ωc = eB/m∗ and�0(B) =

[
ω2

0(B)−N�2
]1/2

.
In the HF calculations, after replacing the Coulomb interactions with the harmonic

interactions, the whole process is the same as for the former case [11, 12]. If the occupied
single-electron orbitals are(n1, m1), (n2, m2), . . . , (nN,mN), then the corresponding total
energy state is labelled as{n1m1, n2m2, . . . , nNmN}. Since all the low-lying energy states
considered here correspond to the lowest Landau level, that is,n1 = n2 = . . . = 0, so the
energy state can be labelled as{m1, m2, . . . , mN} for short. If theN occupied orbitals are
those with the lowest orbital energies, then the total state is the ground state of the system with
energyEHFg .

For a given value ofN , the exact ground state energy is easily obtained by equation (4),
while the HF value of the ground state energy is obtained by setting the occupied single-electron
orbitals to be(0, 0), (0, 1), . . . , (0, N − 1). Choosingh̄� = 5.6 meV,V0 = 10 meV and
h̄ω0 = 15 meV for GaAs quantum dots [14], the ground state energies forN = 2, 3, . . . ,7
(N > 7 is unstable for the chosen dot parameters) are calculated and the results are shown in
figure 1. In this and the following figures, the energies are given in units of ¯hω0. It is clear
that the correlation corrections to the ground state energies are very small for all the cases
discussed here. ForN = 2, the correlation energyEc = −0.043h̄ω0 is 0.1% of the total
energy. Even forN = 7, the correlation energyEc = −0.27h̄ω0 is only 0.8% of the total one.
It should be mentioned that in the HF calculation only five Gaussian functions are taken into
account in the expansions of single-electron wave functions, just as in the case of Coulomb



Letter to the Editor L91

Figure 1. Comparison of the HF and the exact ground state energies for quantum dots withN =
2–7 electrons. The energies are in units of ¯hω0, the dot parameters are appropriate to GaAs and
ωc/ω0 = 1.

Figure 2. The absolute values of correlation energies for quantum dots withN = 2–7 electrons.
The energy unit and the dot parameters are the same as in figure 1.

interactions, where this truncation caused an error of about 0.1% [11]. But for the case of
harmonic interactions, the numerical results converge much more quickly than for the case of
Coulumb interactions, and the estimated error is less than 0.02% . So, even if the numerical
error is considered, the present results of the correlation energyEc are still reliable. To see the
change of the correlation energyEc with the number of electronsN more clearly, the curve of
|Ec| versusN is plotted in figure 2.
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In order to investigate the relation between the electron correlations and the electron
interaction strength, the absolute values of correlation energies|Ec| as functions of electron
interaction strength�2 are plotted in figure 3. Here the electron interaction strength�2 is
limited in the regime�2 < ω2

0/N in order that all the electrons remain in the dot. It is shown
that the largerN is, the faster|Ec| grows with�2. If �2 continues to increase after reaching the
valueω2

0/N , theN th electron will leave the dot to keep the otherN − 1 electrons confined in
the dot [14]. So, the upper end of each curve at the limit�2 = ω2

0/N corresponds to the largest
value of|Ec| permitted for a stable dot with the given number of electrons. This phenomenon
does not exist in a dot with electron–electron interactions of Coulombic form.

Figure 3. The absolute values of correlation energies as functions of electron–electron interaction
strength�2(< ω2

0/N ) for quantum dots withN = 2–5, 8 and 10 electrons. The energies are in
units ofh̄ω0 andωc/ω0 = 1.

The ‘magic’ ground-state angular momentum sequence is well known for the Coulomb
interactions [1, 10]. But for the harmonic interactions the ground state of the dot does not
show such angular momenta transitions so clearly, even forN = 2 electrons. To get a fuller
comprehension of this case and to show the role of electron correlations, the exact and the HF
lowest energy levels for given values of1M above the ground state valueMg = N(N − 1)/2
are compared in figure 4. For a given total angular momentumM = Mg + 1M, the exact
energy values of possible states above the ground state are given by [14]

1E = (1M − n)h̄(ω0(B)− ωc/2) + nh̄(�0(B)− ωc/2) (5)

wheren is the relative mode quantum number and1M−n is the centre-of-mass mode quantum
number. Due to the antisymmetric requirement on the totalN -electron wave function, for
N = 2, n can take only even numbers less than or equal to1M, and forN > 2, n can take
any numbers less than or equal to1M exceptn = 1. The lowest energy level for a given1M
corresponds to the largest permittedn.

In the case ofN = 2, both the exact and HF energies oscillate with1M in period of 2. But
in the cases ofN > 2, only the HF energies oscillate with1M in period ofN , while the exact
ones vary linearly except at the point1M = 1. The difference between the cases ofN = 2
andN > 2 is caused by the different limitations ton for N = 2 andN > 2. In all cases, we
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Figure 4. The lowest state energies as functions of the additional angular momentum above the
ground states for quantum dots withN = 2, 3 and 5 electrons. The energy unit and the dot
parameters are the same as in figure 1.

note that in the ‘magic’ angular momentum states the HF levels lie more closely to the exact
ones. It is reasonable to explain this as due to the fact that the electron correlation interactions
in the ‘magic’ angular momentum states are smaller than in the other states. Indeed, this is
also the case for the dots with Coulomb interactions [11].

In summary, we have studied the correlation energies of quantum dot electrons with
harmonic interactions in a magnetic field by comparing the HF ground state energies with the
corresponding exact values. The results show that the correlation corrections to the ground
state energies are not more than 1% for all the cases with given dot parameters appropriate to
GaAs. Though the role of correlation interactions becomes more important with the increase
of the number of electronsN and the electron–electron interaction strength�2, it is limited by
the condition�2 < ω2

0/N for a stable dot. The calculated results also show that the correlation
energies oscillate with the angular momentumM in periods ofN . At the so called ‘magic’
angular momenta for Coulomb interactions, the correlation energies always take their minima.
This characteristic of correlation interactions for the harmonic model is similar to that for the
Coulombic model.

I would like to thank Dr L F Mao for his help in preparing this article. This research is partly
supported by the Basic Research Foundation of Chongqing University.
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